import { LinearRegression } from 'mz-ml';
// feature can be of any dimension
const features = [[17], [170], [80]];
const labels = [91, 66, 58];
const regression = new LinearRegression({
learningRate: 0.00001,
epochs: 1000,
features,
labels,
batchSize: 2, // optional
});
const [weights, bias] = model.fit(); // [[0.4855781005489537], 0.8483783596443771]
const prediction = model.predict([17]); // 89
const predictions = model.predictBatch([[17], [170]]); // [12.91101530077734, 127.54339895600721]
// The coefficient of determination R-Squared
const r2 = model.rSquared(); // 0.4
const mse = model.meanSquaredError(); // 85.4980142561762
// Pearson correlation coefficient
const pearson = model.pearson(); // 0.5429934671731338